CEOI'2012 Day1, Task: race

In the non-crossing case (k=0), the solution is fairly straightforward using dynamic programming. The only thing to notice is that if we go along the race track, the harbors already visited divide the shore into intervals of harbors, such that once we enter an interval (ie. we visit one of its harbors), we can never leave it. For example if the first four stages of the race track are as in Fig. 1, then the ending of the race track cannot leave the B-D interval.

Figure 1:

For harbors A and B, let ed(A, B) be the length of the longest possible track starting from A that stays within the interval [A, B), by which we mean the collection of harbors running in the counterclockwise direction from A to, and not including B. Similarly we define edc(A, B) to be the maximum on the interval $[A, B)_c$ running in the clockwise direction. Keeping the aboves in mind, it is easy to see that

$$ed(A,B) = \max_{C \in [A,B) \exists A-C \text{ route}} \{1 + \max\{ed(C,B), edc(C,A)\}\},\$$

defining the maximum to be 0 if there is no such C. A similar formula computes edc(A, B), and one can use these to produce an O(N(N+E)) solution, where N denotes the number of harbors and E denotes the number of direct routes. A correct solution to this case was worth 40 points in the competition.

Let us investigate now the case when we allow a crossing on the first stage. It is interesting to note that the optimum is at most 1 greater than the non-crossing optimum: indeed, if we omit the first stage we get a non-crossing race track. However, this observation does not give us a longest track, and it is actually not needed for our solution. Instead, we focus on the intersection. Suppose the track starts at harbor A, the next harbor being B, and later it crosses the A-B stage going from harbor C to harbor D. For fixed A, B, C, D, we really have two cases: the harbors A, C, B, D are in either clockwise or counterclockwise order. For now, suppose they are in clockwise order (the other case works analogously). The race track must start with stage A-B, then it is "monotone counterclockwise" in the interval [B,C], reaching C. The next stage is C-D, and the ending is an arbitrary non-crossing track either in the interval $[D,A)_c$ or in [D,B) (see Fig. 2). Let md(B,C) be

Figure 2:

the length of the longest monotone counterclockwise track from B to C. This function can also be computed for all intervals in O(N(N+M)) time, using dynamic programming. Now we see that with A, B, C, D fixed, the longest such race track has length $1 + md(B,C) + 1 + \max\{edc(D,A), ed(D,C)\}$, which can be calculated in constant time. Checking every possible pair of routes A - B and C - D, this gives a solution of complexity $O(N^2 + M^2)$, earning 70-75 points on our test data.

For the optimal solution, we need yet another observation. Indeed, suppose we only fix B, C and D, and wish to choose A in the interval (C, D) optimally. If the ending of the race track is in the interval [D, B), then the choice of A does not matter. On the other hand, if the ending is in $[D, A)_c$, then we want to maximize edc(D, A). But this is obviously monotone: the farther away A is from D, the longest ending is possible. So we do not actually have to check the above formula for each A in the interval, it is enough to check it for the harbor A closest to C such that there is an A - B route. Now for finding this A, we do not even need D to be fixed, so we can start by fixing B and C, then find the only interesting A, and then go through the possible D's. These ideas give an O(N(N+M)) algorithm, an efficient implementation of which passes all test cases.

Implementation

```
program boatrace;
   type int=longint;
3
   const
        MAXN=500;
 4
5
    var
         a\,, aa\,, md, mdc\,, ed\,, edc\, : \underbrace{\texttt{array}} \, \left[\, 0\, \ldots \text{MAXN}, 0\, \ldots \text{MAXN}\right] \quad \text{of} \quad \text{int} \, ;
6
7
         adj:array [0..MAXN, 0..MAXN] of boolean;
8
         last ,b,bb:array [0..MAXN] of int;
9
         n, kk, max, maxi: int;
10
11
    procedure inp;
12
13
         i, j, x: int;
14
    begin
15
         readln (n, kk);
16
         for i := 0 to n-1 do
17
         for j:=0 to n-1 do adj[i,j]:=false;
18
         for i:=0 to n-1 do begin
19
              read(x);
              while x>0 do begin
20
                   adj[i,x-1]:=true;
21
22
                   read(x);
23
              end;
24
              readln;
25
         end;
26
27
         for i:=0 to n-1 do begin
28
              b[i]:=0; bb[i]:=0;
29
         end;
30
31
         for i:=0 to n-1 do begin
32
              j := (i+1) \mod n;
33
              while i > j do begin
34
                    if adj[i,j] then begin
                         inc(b[i]);
35
36
                         a[i,b[i]]:=j; md[i,j]:=1; mdc[i,j]:=1;
37
                   end;
38
                    if adj[j,i] then begin
                         inc(bb[i]); aa[i,bb[i]]:=j;
39
40
                   end;
41
                   inc(j);
                    if j=n then j:=0;
42
43
              end;
```

```
44
         end;
45
    end;//inp
46
47
    procedure calc;
48
    var
49
         i , j , t , h : int ;
50
         x,y:int;
51
    begin
          for i := 0 to n-1 do begin
52
53
              md[i,i]:=0; mdc[i,i]:=0; //ed, edc:open interval
               ed[i,i]:=0; edc[i,i]:=0; //md, edc:closed:interval
54
55
         end;
56
57
          for t:=1 to n do begin
               for i:=0 to n-1 do begin
58
59
                    for j:=1 to b[i] do begin
60
                         y := a[i, j];
                         x := (i+t) \mod n; h := (y+n-i) \mod n;
61
                         if h<t then begin
62
63
                              if (md[y,x]>0) and (md[y,x]>=md[i,x]) then
64
                                   md[i,x] := md[y,x] + 1;
65
                              if \operatorname{ed}[y,x] > = \operatorname{ed}[i,x] then \operatorname{ed}[i,x] := \operatorname{ed}[y,x] + 1;
66
                              if \operatorname{edc}[y,i] > = \operatorname{ed}[i,x] then \operatorname{ed}[i,x] := \operatorname{edc}[y,i] + 1;
67
                         end:
68
                         x := (i+n-t) \mod n; h := (i+n-y) \mod n;
                         if h<t then begin
69
70
                              if (mdc[y,x]>0) and (mdc[y,x]>=mdc[i,x]) then
                                   mdc[i,x]:=mdc[y,x]+1;
71
72
                              if \operatorname{edc}[y,x] > = \operatorname{edc}[i,x] then \operatorname{edc}[i,x] := \operatorname{edc}[y,x] + 1;
73
                              if \operatorname{ed}[y,i] > = \operatorname{edc}[i,x] then \operatorname{edc}[i,x] := \operatorname{ed}[y,i] + 1;
74
                         end;
75
                    end;
              end;
76
77
         end;
78
         \max:=0;
          79
80
              \max:=\operatorname{edc}[i,i]; \quad \max:=i;
81
          end;
82
          for i:=0 to n-1 do if ed[i,i]>max then begin
                                                                      // ed[i, i-1]
83
              \max := ed[i,i]; \max i := i;
84
          end:
    end; //calc
85
86
87
    procedure opt;
88
    var
89
         i, j, k: int;
90
         x, y, z, tmp: int;
91
    begin
92
          for i:=0 to n-1 do begin
    //case 1: iyzx positive (with the above notation C=i, A=y=last[x], D=z, B=x)
93
94
               for j := 2 to n-1 do begin
                                                        //calculate A=last[x]
95
                    x := (i+j) \mod n; k := 1;
                    while (k \le bb[x]) and ((aa[x,k]+n-i-1) \mod n > j-1) do inc(k);
96
97
                    if k \le bb[x] then last[x] := aa[x,k] else last[x] := -1;
98
               end:
99
100
               for j:=2 to n-2 do if adj[i,(i+j) \mod n] then begin
101
                    z := (i+j) \mod n;
102
                    for k := j+1 to n-1 do begin
```

```
103
                        x := (i+k) \mod n;
                         if (last[x]>-1) and ((n+last[x]-i) \mod n < j) and (md[x,i]>0)
104
105
                         then begin
                              if \operatorname{edc}[z, \operatorname{last}[x]] > \operatorname{ed}[z, x]
106
107
                                   then tmp:=1+md[x,i]+1+edc[z,last[x]]
108
                                   else tmp:=1+md[x, i]+1+ed[z, x];
109
                              if tmp>max then begin
110
                                  \max:= tmp; \max i := last[x];
111
                              end;
112
                        end;
113
                   end;
114
              end;
115
    //case 2: iyzx negative
116
               for j:=1 to n-2 do begin
117
                   x := (i+j) \mod n; k := 1;
                    while (k \le bb[x]) and ((aa[x,k]+n-i) \mod n > j) do inc(k);
118
119
                         if k>1 then last[x]:=aa[x,k-1] else last[x]:=-1;
120
              end;
               for j:=2 to n-2 do if adj[i,(i+j) \mod n] then begin
121
122
                   z := (i+j) \mod n;
123
                    for k:=1 to j-1 do begin
                        x := (i+k) \mod n;
124
                         if (last[x]>-1) and ((n+last[x]-i) \mod n>j) and (mdc[x,i]>0)
125
126
                              if \operatorname{ed}[z, \operatorname{last}[x]] > \operatorname{edc}[z, x]
127
128
                                   then tmp:=1+mdc[x,i]+1+ed[z,last[x]]
129
                                   else tmp:=1+mdc[x,i]+1+edc[z,x];
130
                              if tmp>max then begin
131
                                  \max:= tmp; \max i := last[x];
132
                              end;
133
                        end;
134
                   end;
              end;
135
         end;
136
137
    end;//opt
138
139
    begin // prog
140
         inp;
141
          calc;
142
          if kk=1 then opt;
          writeln(max);
143
          writeln(maxi+1);
144
145
    end.
```