CEOI’2012 Day1, Task: race

In the non-crossing case (k = 0), the solution is fairly straightforward using dynamic programming. The only
thing to notice is that if we go along the race track, the harbors already visited divide the shore into intervals of
harbors, such that once we enter an interval (ie. we visit one of its harbors), we can never leave it. For example
if the first four stages of the race track are as in Fig. 1, then the ending of the race track cannot leave the B — D
interval.

C

Figure 1:

For harbors A and B, let ed(A, B) be the length of the longest possible track starting from A that stays within
the interval [A, B), by which we mean the collection of harbors running in the counterclockwise direction from
A to, and not including B. Similarly we define edc(A, B) to be the maximum on the interval [A, B). running in
the clockwise direction. Keeping the aboves in mind, it is easy to see that

ed(A,B) = max {1 + max{ed(C, B),edc(C, A)}},
C€[A,B)3A-C route

defining the maximum to be 0 if there is no such C. A similar formula computes edc(A, B), and one can use
these to produce an O(N(N + E)) solution, where N denotes the number of harbors and E denotes the number
of direct routes. A correct solution to this case was worth 40 points in the competition.

Let us investigate now the case when we allow a crossing on the first stage. It is interesting to note that
the optimum is at most 1 greater than the non-crossing optimum: indeed, if we omit the first stage we get a
non-crossing race track. However, this observation does not give us a longest track, and it is actually not needed
for our solution. Instead, we focus on the intersection. Suppose the track starts at harbor A, the next harbor
being B, and later it crosses the A — B stage going from harbor C' to harbor D. For fixed A, B, C, D, we really
have two cases: the harbors A, C, B, D are in either clockwise or counterclockwise order. For now, suppose they
are in clockwise order (the other case works analogously). The race track must start with stage A — B, then
it is "monotone counterclockwise" in the interval [B, C], reaching C. The next stage is C'— D, and the ending
is an arbitrary non-crossing track either in the interval [D, A). or in [D, B) (see Fig. 2). Let md(B,C) be

B B

Figure 2:

00 O Ui Wi

the length of the longest monotone counterclockwise track from B to C. This function can also be computed
for all intervals in O(N(N + M)) time, using dynamic programming. Now we see that with A, B,C, D fixed,
the longest such race track has length 1 + md(B,C) + 1 4+ max{edc(D, A),ed(D,C)}, which can be calculated
in constant time. Checking every possible pair of routes A — B and C — D, this gives a solution of complexity
O(N? + M?), earning 70-75 points on our test data.

For the optimal solution, we need yet another observation. Indeed, suppose we only fix B,C and D, and
wish to choose A in the interval (C, D) optimally. If the ending of the race track is in the interval [D, B), then
the choice of A does not matter. On the other hand, if the ending is in [D, A)., then we want to maximize
ede(D, A). But this is obviously monotone: the farther away A is from D, the longest ending is possible. So we
do not actually have to check the above formula for each A in the interval, it is enough to check it for the harbor
A closest to C such that there is an A — B route. Now for finding this A, we do not even need D to be fixed, so
we can start by fixing B and C, then find the only interesting A, and then go through the possible D’s. These
ideas give an O(N(N + M)) algorithm, an efficient implementation of which passes all test cases.

Implementation

program boatrace;
type int=longint ;
const
MAXN=500;
var
a,aa,md,mdc,ed,edc:array [0..MAXN, 0..MAXN| of int;
adj:array [0..MAXN,0..MAXN] of boolean;
last ,b,bb:array [0..MAXN] of int;

n,kk ,max, maxi:int ;

procedure inp;
var
i,j,x:int;
begin
readln (n,kk);
for i:=0 to n-1 do
for j:=0 to n—-1 do adj[i,j]:=false;
for i:=0 to n—1 do begin
read (x);
while x>0 do begin
adj[i,x—1]:=true;
read (x);
end ;
readln ;
end ;

for i:=0 to n—1 do begin
b[i]:=0; bb[i]:=0;
end ;

for i:=0 to n—1 do begin
j:=(i+1) mod n;
while i<>j do begin
if adj[i,j] then begin
inc(b[i]);
ali,b[i]]:=j; md[i,j]:=1; mdc[i,]j]:=1;
end ;
if adj[j,i] then begin
inc(bb[i]); aali,bb[i]]:=j;
end ;
inc (j);
if j=n then j:=0;
end ;

44 end ;
45 endj;//inp

46

47 procedure calc;

48 wvar

49 i,j,t,h:int;

50 X,y:int;

51 begin

52 for i:=0 to n—1 do begin

53 md[i,i]:=0; mdc[i,i]:=0; //ed, edc:open interval

54 ed[i,i]:=0; edc|[i,i]:=0; //md, mdc:closed interval

55 end ;

56

57 for t:=1 to n do begin

58 for i:=0 to n—1 do begin

59 for j:=1 to b[i] do begin

60 yi=al[i,jl;

61 x:=(i+t) mod n; h:=(y+n—i) mod n;

62 if h<t then begin

63 if (md[y,x]>0) and (md[y,x]>=md[i,x]) then

64 md[i,x]:=md[y,x]+1;

65 if ed[y,x|>=ed]|i,x] then ed[i,x]:=ed[y,x]+1;
66 if edc|y,i] >=ed[i,x] then ed][i,x]:=edc|y,i]+1;
67 end ;

68 x:=(i4+n—t) mod n; h:=(i4n—-y) mod n;

69 if h<t then begin

70 if (mdc[y,x]>0) and (mdc|y,x]>=mdc|[i,x]) then
71 mdc[i,x]:=mdc|y,x]+1;

72 if edc|y,x]>=edc|i,x] then edc|i,x]:=edc|y,x]+1;
73 if ed[y,i] >=edc|i,x] then edc|i,x]:=ed|y,i]+1;
74 end ;

75 end ;

76 end ;

77 end ;

78 max:=0;

79 for i:=0 to n—-1 do if edc[i,i]>max then begin //edc|i,i+1]
80 max:—edc[i,i]; maxi:=i;

81 end ;

82 for i:=0 to n—1 do if ed[i,i]>max then begin //ed[i,i—1]

83 max:=ed[i,i]; maxi:=i;

84 end ;

85 end;//calc

86

87 procedure opt;

88 wvar

89 i,j,k:int;

90 X,y,z,tmp:int ;

91 begin

92 for i:=0 to n—-1 do begin

93 //case 1l: iyzx positive (with the above notation C=i, A=y=last[x], D=z,
94 for j:=2 to n—-1 do begin //calculate A=last [x]

95 x:=(i+j) mod n; k:=1;

96 while (k<=bb[x]) and ((aa[x,k]+n—i—-1) mod n>j—-1) do inc(k);
97 if k<=bb|[x] then last[x]:=aa[x,k] else last[x]:=—-1;
98 end ;

99

100 for j:=2 to n-2 do if adj[i,(i+j) mod n] then begin

101 z:=(i+j) mod n;

102 for k:=j+1 to n—1 do begin

103 x:=(i+k) mod n;

104 if (last[x]>-1) and ((n+last[x]—i) mod n<j) and (md[x,i]>0)
105 then begin

106 if edc[z,last[x]]>ed][z,x]

107 then tmp:=14+md|[x,i]+1+edc|[z,last [x]]
108 else tmp:=14+md|[x,i]+1+ed[z,x];

109 if tmp>max then begin

110 max:=tmp; maxi:=last [x];

111 end ;

112 end ;

113 end ;

114 end ;

115 //case 2: iyzx negative

116 for j:=1 to n—2 do begin

117 x:=(i+j) mod n; k:=1;

118 while (k<=bb|[x]) and ((aa[x,k]+n—i) mod n>j) do inc(k);
119 if k>1 then last[x]:=aa[x,k—1] else last[x]:=-1;
120 end ;

121 for j:=2 to n-2 do if adj[i,(i+j) mod n] then begin
122 z:=(i+j) mod nj

123 for k:=1 to j—1 do begin

124 x:=(i+k) mod n;

125 if (last[x]>-1) and ((n+last[x]—i) mod n>j) and (mdc[x,i]>0)
126 then begin

127 if ed[z,last[x]]>edc[z,x]

128 then tmp:=14mdc|[x,i]+1+ed[z,last[x]]
129 else tmp:=14mdc|[x,i]+1+edc[z,x];

130 if tmp>max then begin

131 max:=tmp; maxi:=last [x];

132 end ;

133 end ;

134 end ;

135 end ;

136 end ;

137 endj;//opt

138

139 begin//prog

140 inp;

141 calc

142 if kk=1 then opt;

143 writeln (max);

144 writeln (maxi+1);

145 end.

